Vim For Developers: Practical
Introduction Into Vim

Yanis Triandafilov

Abstract

In this book we are focusing on configuring our Vim from
scratch in order to build a modern, fully-capable IDE on top of it.
It is written for people who would like to try Vim out but don’t
know how to start and are scared or disappointed by the lack of
modern IDE-like features essential for a productive development
workflow.

Contents

Preface: Why Learn Vim in 2023?

Introduction
The Flavorsof Vim
Configuration
Installation

Chapter 1. The Basics

Editing Files
Gettinghelp L
How to rollback changes
Modes e e e e
Basic Navigation.
Copying and pastinginVim
Key Takeaways o v v v v v it
Chapter 2. Deeper Dive
Cursor Motions And Operators
Plugins e
Copy-pasting and Registers
Key Takeaways« o v v v v v i
Chapter 3. A Quick Introduction To VimL
Setting and overriding variables
Key Mappings (help key-mapping)
Theleaderkey
Automatic commands (help autocmd)
Key takeaways o

Chapter 4. Navigating files
Openingafile
Buffers
Plugin Time: Buftabline
Tabs o e
Splits e
Plugin time: NERDTree
FZF . . . e e
Key takeaways e

Chapter 5. Getting comfortable
Matchingpairs. s
Highlighting
Commenting e
Adding surroundingso 0.
Multiple cursorso

Chapter 6. Searching
SearchingInAFile

Search and replace: anexample
Substituteo oo
Searchinginaproject
Key takeawayso

Chapter 7. Formatting And Linting
Indenting
Indentingrules
Trailing characters
Auto-indentingo
Formattingo
Lintingwith ALE
Key takeaways e

Chapter 8. Code Completion And Language Servers
Completing Vim commands (help compl-vim)

Language Servers v e e e e e e e e e e
Conquer of Completion
Key takeaways o

Chapter 9. Working with Git
Plugin time: fugitive,
Gitgutter Lo
Key takeaways o e

Useful Resources
Keepingup oL
Diving Deeper Lo e

Bonus. Beyond Vim: productive shell and tools
Zshandoh-my-zsh
Small and veryuseful
Drop-in replacements
Key takeaways e

Please send the comments, ideas, and mistakes you find to

me: janis.sci@gmail.com.

Preface: Why Learn Vim in 2023?

Vim has been around for some time (the first public version was re-
leased in 1991). Why is it still gaining traction now when there are all

sorts of editors and smart IDEs for any language on the market?
There are several reasons for this:

* Editing speed. Vim modes provide a unique editing experience
optimized for keyboard-only use and are thus very efficient. More
on that later.

* Vim is very lightweight. The program starts in just a few mil-
liseconds. If you run Vim and open your process inspector, you’ll
notice it only takes up several megabytes of RAM, not gigabytes
like some popular IDEs.

* It’s extensible. There are thousands of different Vim plugins,
which can give you almost anything a modern IDE would need,
e.g., code completion, fuzzy file search, jumps between defini-
tions, etc.

* Close to the OS. Vim is just one tool of many you can use to
perfect your development experience. It integrates nicely with
other terminal tools. For example, you can easily sort lines in
your editor using sort on any Unix machine.

 Language-agnostic. You can set up your Vim to work with
JavaScript, TypeScript, C++, Ruby, or Haskell — no need to keep
a separate IDE for each language.

* Vim is bottomless. Every now and then, you get to discover
some amazing features. It’s crazy how many useful features there

are and how deeply they’re thought out.
So why is Vim considered hard to learn?

Vim is usually thought of as something with quite a steep learning
curve. Some concepts are absent in popular editors and may feel weird
in the beginning (for example, modes). But you will soon realize that
there is nothing scary about those things and that they are, in fact, very

logical and convenient to use.

.updateTodo = this.updateTodo. (this)
.publish = this.publish.bind(this)
.unpublish = this.unpublish.bind(this)
.remove = this.remove. (this)

onChange(edited) {
.setState({ edited })

remove(e) {
e. : ()
¢ - { id } = this. .note
this.props.|
if (!id. note (property) note: INote
alertify edit (property) edit?: boolean | undefined
.confi updated (property) updated: (id: .. any) => void
-1 (removed (property) removed: (id: any) => void
if (onEdit (property) onEdit: (id: any) => void
Ap children (property) children?: React.ReactNode
body
}) onChange
}.
1)
} else {
this.props.removed(id)
+
}

unpublish(e) {

e.,tf,t,,,,()

Figure 1: Example of Vim setup with TypeScript autocompletion

Vim may look less impressive at first glance. New users expecting to
see modern IDE features are bound to be disappointed. Newbies are
both scared of unfamiliar concepts and disappointed by the lack of es-

sential features for productive dev work.
Those were my first impressions as well.

With this book, I decided to try something new. Yes, we’ll still walk
through the basics and learn all the common Vim concepts and idioms.
But at the same time, we will focus on building a fully capable modern
IDE on top of Vim by extending the configuration (.vimrc / init.vim

) and adding all the necessary plugins as we go.

Every new chapter of this book will both teach you about the “Vim way”
and will also introduce some configurations and plugins that you can

start using right now with immediate effects on productivity.

By the end of this book, you will have a good understanding of how Vim
works and be able to build a fully-fledged, modern IDE-like experience

on top of it.

Introduction

In this chapter we’ll learn how to install Vim, what kinds of Vims are
out there, and why it’s important to start configuring it from the very

beginning.

The Flavors of Vim

Vim itself is an upgrade of an older editor called Vi (Vim stands for “Vi
IMproved”). Nowadays there are even more options that are based on

Vim or use similar concepts:

* Vim which got the background processing capabilities with the
latest (eighth) release

* MacVim provides a more pleasant Ul (on OSX)

* Neovim provides some additional features such as background
processing, and a built-in terminal.

* Oni, a full IDE with all the bells and whistles based on Neovim.

* There are preconfigured bundles (I wouldn’t recommend it for ed-
ucational purpose): janus, spacevim

* Almost all modern editors and IDEs have a “Vim mode” (so you can
use your favorite IDE and still enjoy the basic Vim keybindings and

modes).

Those different versions don’t really differ from each other all that
much. The main differences are found in the default settings and the
location of the configuration file, plus some miscellaneous custom
tweaks. Though, NeoVim and Vim diverge from each other quite a lot

(with introductory of Lua and Vim9 Script).

For the purpose of this book we’ll be working with regular Vim. Still,

99% of what you’ll learn is compatible with any other version.

Configuration

The power of Vim comes from its flexible configuration. Clean Vim is

not very useful out of the box. It requires a little bit of tweaking. It is

6

LanguagesStore.ts + (~/build/onivim/oni/browser/src/Services/Language) - ONI
Explorer E.md LanguageStore.ts @

const doesLocationBasedResultMatchCursorPosition =

git result: ILocationBasedResult<any>,
- state: ILanguageState,
.github = {
return (

result.filePath == state.activeBuffer.filePath &&
.vscode result. line state. cursor. line &
result.column state.cursor.column &&
state.mode === "normal"

.oni

assets
browser
build

cli

auditTime(duration: number , scheduler?: IScheduler): Observable<LanguageAction>

t const queryDefinit: Time to wait before emitting the most recent source
definitionRequestor: ! value, measured in milliseconds or the time unit determined internally

configuration : Epic<LanguageAction, Il by the optional “scheduler’.

definitions
dist

docs

const state = <> action$ (parameter) action$: ActionsObservable<LanguageAction>

extensions .
& activateCommands

font-awesome const { fileP:
: const { line,
RIS @ addInsertModeLanguageFunctionality
lib return Observ: 2pplicationcache
. const resucc 1 AL C Lo
lib_test language,

main filePath,

line,

column,

& addInsertModeLanguageFunctionality
U T TgTTeTTITaD

node_modules

scripts

return {
type: "DEFINITION_QUERY_RESULT"

vim result: {

filePath,

language,

test

.editorconfig

= .gitattributes

% typescript ¥ HEAD 293,27

Figure 2: Oni - Beautiful UI on top of Neovim
absolutely essential to know how to do this, otherwise it doesn’t make
much sense to use Vim at all.

Vim’s configuration is stored in a special file (~/.vimrc). Upon instal-
lation, that file won'’t exist yet. So we will need to create it first, and
then during the course of this book, we’ll be adding different settings
onto it, one by one. And our modest editor will gradually transform

into a beautiful and powerful IDE.

Installation

Installing Vim is a very straightforward process. If you’'re on MacOS, I

recommend using brew, a package manager for... well, everything.

brew install vim

vim

Installing Vim on Debian or Ubuntu is equally easy:

sudo apt-get install vim

sudo apt install vim

If you work with some other platform, please refer to this official guide.

Now let’s learn the basics.

Chapter 1. The Basics

In this chapter, you’ll learn how to open and navigate files, where to
get help, and will finally understand modes. If it feels a bit dense, don’t
worry. We’'ll recap most of the concepts in the later chapters in more
detail.

Editing Files
First things first. In order to edit a file type

vim src/App.ts

vim src/App.ts src/css/styles/app.css

When you’re done, press Esc to make sure you're in the normal
mode (more on modes later). Then type :wq to write the changes

and quit or :q! to exit without saving. Press enter.
Now you know how to exit Vim.
Alternatively,

* to quit without saving you could press ZQ , or

* ZZ to write the current file and quit.
All key combinations are mnemonic.

For example, wq is easy to remember as (w)rite + (q)uit . If
you have multiple buffers and/or tabs open and you want to quit
and save all of them, then you can type :wga , which stands for

(w)rite + (q)uit + (a)ll .

This mnemonic nature of operators and commands is important for re-
membering all those combinations and helping your muscle memory,

so it worths paying attention.

Getting help

Before we went too far, let’s talk about getting help.

Vim comes with a quite comprehensive help manual. And when I say
comprehensive, I mean you don’t even need to google what you’re look-

ing for.

Instead you just go the command-line mode and type :help <query>

Help pages are organized with keywords, and are connected with each

other forming a help network.
Try something like:

 :help tabs tolearn about tabs in Vim

* :help navigation to learn about motions
* :help help to get meta

 :help 42 for an intriguing Easter egg

Remember, when you type : in normal mode, you cursor is moved
into the bottom part of the screen. There you can continue typing the

command.
Here are some tips to work with Vim help:

* Instead of :help tabs you can use a shorcut :h tabs
* Auto-completion. After you type :help com you can continuously

press Tab to switch between different topics starting with com

* Help pages are connected with each other. If you see a highlighted
word, that’s a link that you can put a cursor on and press K or
Ctrl +] . Ctrl + T will get you back.

Vim help is very organized and always up-to-date. It should be your
first place to look for information. That is, after StackOverflow. Just
kidding.

How to rollback changes

When you screw things up, how to fix it?

e u is short for “undo”. Press it in normal mode to revert the last

10

operation (this is kinda like CTR/CMD+Z). Press it multiple times
until things are back to normal.

e <C+r> (Ctrl + R) to revert the undo (like Ctr+Y).

* Esc , :qga! Close all the files without saving. Esc to get to

normal mode unless you're already there.

Modes

When you open Vim, you start in NORMAL mode

Normal mode is optimized for navigation and text manipulations other
than typing (copy-pasting, for example). This is why, if you try to type
something right away, you will probably be confused by whatever is

happening on the screen.

If you want to start typing, you first need to switch to INSERT mode.
In this mode, you would probably feel as in any other editor/IDE. When

you type keys you will actually see them appearing on the screen.
How to get from NORMAL to INSERT mode?
There are many ways, for example

* i to simply start typing from where your cursor is (i = “insert”)
* a to start typing from the next character (a = “append”)
* I to start typing from the beginning of the current line

e A from the end of the current line

When you finished typing, press Esc to get back to the normal mode.
Esc will get you back to the NORMAL mode from any other mode.

Esc is your friend.

There is also the VISUAL mode, which is there to help you select a
piece of text; for example, if you want to copy it into the buffer or

delete the entire thing.

* v to start selecting in visual mode (v = visual)

* V to select the whole line

Then, while in visual mode with some text selected, you can type d

11

to delete it and get back to NORMAL mode.

There are other modes as well, but for now let’s focus on those three.

Basic Navigation

OK, let’s learn to navigate our file.
To move your cursor one character at a time you can press:

* h move left
* j move down
* k move up

* 1 move right

Remembering those on the muscle level wasn’t easy. It really takes
some time and patience. However, when you finally learn, it feels so

natural there’s no way you ever go back to arrows again.

There is one thing that helped me learn faster using the HJKL keys: a
piece of configuration that remaps the arrow keys so they simply stop

working. This will force you to use HJKL instead.

Configuration time: disabling arrow keys

Remember, I told you that this book is focused on configuration. Well,

let’s not waste any more time and start doing that!
Vim configuration lives in ~/.vimrc file.

By default it doesn’t exist. But this is ok, we can still open it for editing,

and Vim will create the file once we finish.

vim ~/.vimrc

Now go into the INSERT mode (by pressing i) and type:

noremap <Up> <NOP>

noremap <Down> <NOP>

12

noremap <Left> <NOP>

noremap <Right> <NOP>

As an alternative, you can copy those four lines into the buffer and
insert them with Ctrl/Cmd + V . You still need to be in insert mode in

order to do this.

Now press Esc to get back to Normal mode, then save the file and

exit with :wq .
That’s it.

Now you can open some other file with vim again and try pressing

arrow keys. They don’t work anymore.

How to update Vim configuration?

An alternative to closing and reopening Vim to re-read the settings is

torun :source $MYVIMRC in the command-line mode.

:source is a command that can read any Vim script file and execute
it right away. $MYVIMRC is a special variable that refers to your con-

figuration file.

Copying and pasting in Vim

Copy-pasting in Vim is quite simple, though it might surprise you a

little when you don’t know how it works inside.

If you want to copy text you first select it in visual mode and then you
press y (“yank”). That will put that piece of text in a special buffer, in
Vim terms, a register. Then in normal mode you can press p (“put”

or “paste”) to paste it under the cursor.

Instead of y youcanuse d (“delete”), which works like “cut” - it will
delete the text but will also put it into the buffer, then you can paste it

somewhere else.

13

Key Takeaways

Phew! It was a lot, but we did it.
Here’s what we’ve learned:

* To open a file vim <filename>

* To save and quit Vim, press Esc , then :wg or :wqga

* To abandon the changes: ¢g! and :qa!

* To get help :help <whatever you're looking for>

* To rollback the changes u and Ctrl+R to undo

* Three important modes are NORMAL (the default one), INSERT
(for typing text), and VISUAL (for selecting text)

* Teach yourself to navigate with h , j , k, 1

* Copy text with y , cut with d , and paste with p .

14

Chapter 2. Deeper Dive

In this chapter, we are going to learn a little but more about the Vim

way and continue working on our configuration.

Cursor Motions And Operators

Here’s a very cornerstone of Vim editing.

You can combine an operator (like d - delete) and a motion (like $

- that moves cursor to the end of line).

The result is that this operator is applied to the chunk of text described
by the motion (in this case it removes text from the current position till

the end of line).

Let’s start with motions.

Cursor Motions (or how to navigate around)

We’ve already met with HJKL motions that allows us to navigate text

one character at a time.

Here are some more motions. Try each one, and try to get confortable

with them:

eh, j, k, 1
* w move to the beginning of the next word /

* b move to the start of the current word

* (/) move to the next/previous sentence

* { / } move to the next/previous paragraph

* G go to the last line of the file

* <number>G go to line number

* gg to the beginning of file

* $ jump to the end of the line (g - to the last non-blank)

* ~ jump to the first non-blank character of the line (@ - to the

beginning)

(double back-tick) will get you to the previous position

15

Normally, when I open a file, I start by pressing } multiple times, to
get to the place I'm interested in, then pressing w multiple times to
navigate within the row, jumping from one word to another, and then

h / 1 to navigate by characters.

A good idea might be write those down and keep at sight when working.

Getting used to those takes some time, but eventually pays off.
You can also jump to a specific character:

 f{char} putsyour cursor on the first occurrence of {char} to the

right

F{char} same thing, but in the opposite direction

t{char} puts your cursor just one character before the first oc-

currence of {char} to the right

T{char} same thing, but in the opposite direction

* ; 1is a special motion that repeats the latest motion

You can also combine motions with numbers; for example, you can type

7w to skip 7 words or 5j to go 5 lines down.

Using motions with operators

As said before, you can combine those motions with text operators and

numbers in order to achieve your goal. For example,

* d$ deletes the text from the current character until the end of
the line

* 5x deletes five characters

* dG removes everything from the current line till the end of the
file

Text Objects (:help text-objects)

There are a number of motions called “text object selections” that can

be only used after an operator or in visual mode but not on their own.

e aw / iw stand for “a word” and “inner word”

* ap / ip a paragraph /inner paragraph

16

There are many more, but you get the idea. Prepend a text object with

a or i to be able to do things like:

* daw delete the entire word including spaces after it
* yi{ copy into buffer everything inside the {} block
* ci" remove text and start typing within quotes
* dat delete the whole tag (as in HTML tag) and the spaces after
it
Don’t forget, to revert your changes, press u (undo). Vim undo history

is extremely powerful, but we’ll talk about it a bit later.
Here’s another example. Imagine you have a JavaScript function:

function hello() {

You need to replace the body of that function. You just need three
keys for that ci} which reads as “change inner } - curly brackets”.
Change operator works the same way as delete, but it also leaves you

in the INSERT mode so you can start typing right away.

The Vim way is to combine motions and operators whenever possible.
A Vimmer would never type x , x, X, X, x inorder to delete a
word with five characters. They will press 5x instead, or even better,

daw .

It is your most important task to learn using those combinations as this

is pretty much the essence of Vim.
Phew, there’s a lot of information to digest.

You might wanna break here, and go get some coffee. And then let’s

talk about something else.

Plugins

As we are slowly moving forward, we want our Vim to become more

useful, and in order to do that we will probably need some help.

17

Plugins are very helpful for anything Vim doesn’t have out of the
box. Syntax highlighting? Auto-completion? Snippets? File manager?

There’s a plugin for that!

Let’s start by installing a plugin manager. There are several out there
and they work more or less the same way. I prefer vim-plug which is

very minimalist and it “just works”.

We need to run a little script to install it.

curl ~/.vim/autoload/plug.vim \

https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

Now let’s add our first plugin. Open the configuration file and put at
the very beginning of the file, before anything else:

call plug#begin('~/.vim/plugged")

Plug 'rafi/awesome-vim-colorschemes

call plug#end()

colorscheme OceanicNext

Now reload the configuration with :source $MYVIMRC and run

:PlugInstall . It will install the plugins.

Reload the configuration again, and you should see the color theme

changed.

The :colorscheme command changes the color theme, and the plugin
we installed is just a bunch of different themes. If you don’t like this
particular theme, then type :colorscheme and then press Tab. By

pressing tabs multiple times you should be able to loop through themes

18

so you can try different ones.

Whenever you want to update your plugins, there’s a command for that
too. :PlugUpdate . :PlugClean removes the plugins you don’t use

anymore from the file system.

OK, so (a) we have a plugin manager now, and (b) our Vim finally looks

nice.

Plugin time: more text objects

Now that you know how to install the plugins, let’s practice a little bit.

There is a very useful one which adds more text objects. wellle/targets.vim.

You can install it by adding it to plugins sections.
Now you can use text objects like:

* cin) - change in the next parentheses

* da, -delete a comma separated item from the list

Learn more about the plugin here.

The dot operator (.)

Part of the magic of Vim is the amazing dot operator. When you press
(dot) in the normal mode, it will simply repeat the latest command,

whatever it was. A command can be anything you did in normal mode.

Copy-pasting and Registers

Let’s talk about copy/pasting operators a bit more. The first is called

y (yank), and the otheris p (paste).

Yanking can be combined with text objects. For example, yaw will
put the current word into the clipboard. p will paste it wherever you

type it.

In Vim terminology, a clipboard is called a register. Unlinke, the sys-
tem clipboard, there are many registers in Vim. When yanking a piece

of text, you can choose which register to put it into with "ay .

19

In that example, you put the text into the register a . In order to paste

ap .

it, you should prepend the paste command with register

Some registers serve a special purpose. For example, % register
always stores the name of the current file, / register holds the latest

used search pattern, etc.

Note that the default Vim register is not the same as the system one.
When you copy something from StackOverflow, you will not be able to
paste it straight away with p . You can still do this like this with "*p"

. Here, * (:help quotestar) is a special register that refers to the

system clipboard.

I have this command in my settings to use the system register as de-

fault:

set clipboard”=unnamed

Now your default Vim register refers to the system clipboard, and you

don’t need to prepend p and y commands with "* anymore.

Plugin time: Peekaboo

With so many registers, sometimes it’s easy to get confused. There
is a very nice little plugin, https://github.com/junegunn/vim-peekaboo
which opens a bar on the right every time you you press " and displays

which content is stored in each buffer.

The sidebar is automatically closed on a subsequent key stroke.

Key Takeaways

* Motions allows you to navigate the file in the NORMAL mode (
:help motion)
* Motions can be combined with operators; for example, dj will
remove the current line and the line below
* Motions can also be combined with text objects; for example, cip
will delete the paragraph and put you into the INSERT mode

* Plugins is a way to extend Vim’s capabilities (:help plugin)

20

* Dot operator . repeats the last command (:help registers)
* Registers are like little pockets in which you can put some text.
Copying and pasting use registers. Vim has a register associated

with every letter on the keyboard (and not only letters).

21

